MIL-H-5606D (1) wed 20.

BRAYCO® MICRONIC 756E HYDRAULIC FLUID, PETROLEUM BASE; AIRCRAFT, MISSLE AND ORDNANCE

DESCRIPTION: BRAYCO® MICRONIC 756E is a petroleum base, low viscosity, red-colored hydraulic fluid for aircraft missile and ordnance use. It is a blend of highly refined, selected base stock with suitable additives to yield a product with exceptionally good viscosity-temperature characteristics, good anti-wear properties, low rubber swell, and excellent oxidation stability. The use of a newly developed polymeric viscosity index improver of lower molecular weight has significantly increased the shear stability of BRAYCO® MICRONIC 756E over previous versions of this widely used hydraulic fluid.

USE: BRAYCO® MICRONIC 756E is designed for use in aircraft, missile, and ordnance hydraulic systems where long term stability and low temperature fluidity is necessary. It is intended for use in automatic pilots, shock absorbers, brakes, flap-control mechanisms, missile hydraulic servo-controlled systems and other hydraulic systems using synthetic sealing materials. Fluids compounded to meet this specification undergo certain changes with use. Further information relative to usable life may be found in Fainman and MacKenzie, "The Characteristics and Performance of Specification MIL-H-5606 Hydraulic Fluid," Lubrication Engineering, 22234 (1966).

PACKAGE: BRAYCO® MICRONIC 756E meets all the requirements and is qualified under Military Specification MIL-H-5606D (1) which supersedes MIL-H-5606C, MIL-0-5606, AN-0-366, AN-VV-0-366b and AAF-3580.

PROPERTIES

		SPECIFICATION	TVDICAL
	TEST	REQUIREMENTS	TYPICAL
Viscosity, centistokes, at 300°F (148.9°C)			2.97
	250°F (121.1°C)		3.95
	212°F (100°C)	5.0 min.	5.14
	130°F (54.4°C)		10.04
	104°F (40°C)	13.0 min.	13.50
	32°F (0°C)		45
	0°F (-17.8°C)		110
	-40°F (-40°C)	500 max.	497
	-65°F (-54°C)	3000 max.	2284
Pour Point, °F (°C)		-75 max. (-59.4 max)	-85 (<-60)
Flash Point, PMCC, °F (°C)		180 min. (82 min.)	192 (89)
Acid or Base Number	er, mgKOH/gm	0.20 max.	0.086
Color		red per standard	Passes
Corrosion and Oxida	ation Stability (Oil airblown at		
275°F (135°C) for	168 hours with immersed metal		
specimens)			
Weight change:	Copper	±0.6 max.	-0.053
	Aluminum Alloy	±0.2 max.	-0.023
	Magnesium Alloy	±0.2 max.	-0.015
	Steel	±0.2 max.	0.000
	Cadmium Plated Steel	±0.2 max.	+0.007

Appearance	Copper Color, ASTM Pitting, etching,	3 max.	Passes
	corrosion	None	Passes
Viscosity Change	at 104°F (40°C), %	-5 to +20	+9.6
Neutralization Nu		0.20 max.	0.02
	Stability, -65°F (-54°C)	no solid or separation	Passes
for 72 hours			. 45555
Shear Stability, Pe	ercentage Viscosity Decrease at		
Decrease at 104		Reference Fluid (13)	0.7
	°F (-40°C)	,	0.9
Change in Neutra		0.20 max.	0.00
	Swell, % Volume Increase		0.00
of L-Rubber (Bu		19.0-30.0	28
•	s. @ 160°F (71°C), %	20 max.	10
	rosion, 72 hrs. at 275°F (135°C), ASTM	2 max.	2b
Solid Particle Con			
Number of parti	cles per 100 ml of fluid		
Particle size r	ange, microncs 5-15	2,500 max.	460
	16-25	1,000 max.	87
	26-50	250 max.	29
	51-100	25 max.	9
	100 & Larger	10 max.	2
Weight of Resid	ue per 100 ml of fluid, mg.	0.3 max.	0.00
Time to filter 10		15 max.	10
Foaming Characte	eristics		. •
Foaming Tender	ncy ml. at 75°F (24°C)	65 max.	50
. -	ty, ml. at end of 10 mins.	Complete collapse	Passes
Water %		0.01 max.	0.006
Steel-on-Steel We	ar, mm	1 max.	0.65

^{*}Samples of filled and sealed containers taken at periodic intervals to be representative of each days' operation. The number of samples shall be the cube root of the number of containers filled that day.

TYPICAL PHYSICAL PROPERTIES, NO REQUIREMENTS

Specific Gravity, 60° F/60° F (15.5° C/15.5° C) 0.873

Coefficient of expansion (60° F -160° F) 0.00041

Specific Heat			Thermal Conductivity		
Temperat	ure, °F (°C)	BTU/lb/°F	Temper	ature, °F (°C)	BTU-ft²/hr./°F
-60	(-54)	0.361	-65	(-54)	0.0816
-30	(-34.4)	0.377	0	(-17.8)	0.0802
0	(-17.8)	0.392	100	37.8)	0.0777
80	(26.7)	0.453	200	(93.3)	0.0753
150	(65.6)	0.493	300	(148.9)	0.0730
200	(93.3)	0.523			
250	(121.1)	0.552			

Bu	ulk Modulus, Adiabatic, at 76°F (24.4°C)	Vapor Pressure			
Pressure, PSI	Bulk Modulus, PSI		Temperature, °F (°C) mm of Hg.		
0	232,000	294	(145.6)	30.3	
1000	243,000	272	(133.3)	17.9	
2000	255,000	254	(123.3)	12.2	
3000	266,000	230	(110.0)	6.7	
		194	(90.0)	2.9	
		55	(12.8)	0.01	
		0	(-17.8)	0.0006	
		-65	(-54)	0.000005	

The product information and specifications contained and shown herein have been compiled for the convenience of the user from information based upon our testing and experience to date. It is intended for use by persons having technical skill, at their own discretion and risk. Bray Oil Company, Inc. disclaims any warranty, expressed or implied, of merchantability, fitness for particular purpose or description, or any liability or responsibility for the accuracy or correctness of any description, calculation or technical information contained herein is to be used in an application which is critical, it should be independently verified. The information provided herein is not intended as a license to operate under, or a recommendation to infringe, any patent of Bray Oil Company, Inc. or others covering any material or use.